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NMR Spectroscopy of Organolithium Compounds, Part XX!

SLi,’Si Shift Correlation: A New Tool for Structural Studies of Silylsubstituted
Organolithium Compounds
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Abstract: A 2D-HMQC experiment has been performed for the first time to correlate °Li and 2°Si
resonances using scalar SLi.%%Si coupling in dilithium 1 .4-diyl-1.4-diphenyl-1.2.3 .4-tetrakis(trime-
thylsilyl)butane. where 2J'((’Li.wSi) and 3J(°Li.%°Si) amount t0 0.3 and 0.7 Hz. respectively.
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Two-dimensional NMR shift correlations based on scalar spin-spin coupling belong to the most
important tools in structural analysis and homo- as well as heteronuclear experiments for quite a number of
different nuclei have been introduced ? In the area of organolithium compounds,’ aside from the standard
'H,'H and 'H,"*C experiments (COSY and HETCOR/COLOC or HMQC/HMBC, respectively),? homonuclear
®Li,°Li correlations based on COSY,* INADEQUATE,> and TOCSY? sequences were successful. In addition,
heteronuclear correlations between °Li and '*C or 'H have been shown to provide important structural
information about the aggregation of these systems in solution.”

In the present communication we describe a new application of the 2D-HMQC pulse sequence with the
first heteronuclear shift correlation for the spin pair °Li,?Si. Dilithium 1,4-diyi-1,4-diphenyl-1,2,3,4-tetrakis(tri-
methylsilyl)butane (°Li enrichment > 98%, ?°Si natural abundance [4.9%]), described in the preceding commu-
nication, has an "internal" and "external" lithium cation (1, Fig. 1). Only the former, associated with the lithium
signal at 0.37 ppm (rel. to ext. 0.1 M LiBr in THF) shows in the 1D *C and 2°Si NMR spectra, respectively,
13C 5Li coupling and small but detectable °Li,?*Si coupling constants of 0.3 Hz for the geminal [2/(Li,1-Si)] and
0.7 Hz for the vicinal [*J(Li,2-Si)] interactions.® The standard HMQC pulse sequence’

1(°Li) 900, A | 180° |-FID (1)
S (Si) 900, h 90°,

with the phase cycle of the BRUKER software yielded the two-dimensional spectrum shown in Fig.1, where a
delay A =1/2J of 710 ms for the preparation of anti-phase magnetization was used. This value is optimized for
the larger coupling but also allowed the detection of the geminal cross peak. The assignment of the ¥*Si
resonances was unequivocally achieved via a INEPT-HMQC 3C,*Si shift correlation experiment!? based on
LJ('3C,#S1), since C-1 and C-2 are distinguished by their spin-spin coupling to °Li and 'H, respectively. The
measurements were performed on an unlocked 9.7 T superconducting magnet with a double tuned probehead
under 'H decoupling, using the X coil for the ?°Si pulses and the retuned deuterium lock coil as SLi channel.
This simple procedure makes the experiment easily accessible and further successful applications to silylated
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Fig. 1.a) 58.6/79.5 MHz °Li,?Si shift correlation for 1 (0.7 M in [Dg]THF) measured on a BRUKER
400 MHz AMX spectrometer at 294 K; sweep widths F, (*Si) 27.46 ppm (ref. TMS), F, (°Li) 3.05
ppm (ref. ext. 0.1M LiBr in THF), 64 ¢, experiments, 2K data points in F; A delay 0.71 s, relaxation
is determined by the °Li relaxation time,
the sweep width in £, , and the number of ¢, increments and could be lowered to 8 hrs in other cases. b),
¢) traces through the cross peaks. The °Li signal at -1.20 ppm, not shown here, yields no cross peaks. It

delay 3 s, acquisition time 5.71 s, total exp. time 7, 21.5 hrs; 7,

is assigned to the solvent separated "external” 6Li cation.

dilithio compounds will be reported elsewhere.
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